
IWOCL - all the talks

Just an overview of all the tutorials and talks for easy printing reading on an e-reader, provided to 
you by StreamComputing.

Heterogeneous Computing Using Modern C++ with OpenCL 
Devices - Rod Burns and Ruyman Reyes (Codeplay)

This hands-on session will provide an opportunity to get experience with SYCL using 
ComputeCpp™ Community Edition, a free to use implementation of the SYCL 1.2 standard. 
Attendees will be shown how to set up ComputeCpp and use it to write their own SYCL code to run 
on supported GPUs and CPUs.

SYCL is already able to dispatch to heterogeneous devices and it implements C++17 ParallelSTL, 
augmenting it with ability to dispatch to GPUs in addition to CPUs. This tutorial will demonstrate 
how to write parallel SYCL code and how to use the Khronos Group's experimental Parallel STL 
implementation. The course outline is as follows

• Start with a basic SYCL program that shows how to submit queues in a single task and 
stream-like object, comparing CPU, SYCL and OpenCL versions

• Demonstrate how to access data across host and GPUs using buffers and accessors, the 
importance of life-time, and basic parallel constructs

Attendees are expected to have programming experience with C++ and a laptop either running 
Linux or having a VM manager installed such as VirtualBox. The required software will be 
provided on USB-sticks. This course is suitable for beginners, but is focused on intermediate to 
advanced parallel programming using C++.

Harnessing the Power of FPGAs with the Intel FPGA SDK for 
OpenCL- Byron Sinclair, Andrew Ling and Genady Paikin 
(Intel)

In this tutorial, we will introduce you to the reconfigurable hardware architecture and programming 
of Field Programmable Gate Arrays (FPGAs).

You will learn why FPGAs have become so popular in recent years, and understand the many 
advantages of using FPGAs in your HPC application. In particular, we will cover architectural 
features of FPGAs that make them well suited to many complex operations, including matrix 
multiplications and convolutions. In addition, we will introduce you to programming FPGAs using 



the Intel® FPGA SDK for OpenCL, and how specific OpenCL coding techniques can lead to 
efficient circuits implemented on the FPGA.

Finally, we will go over several case studies where FPGAs have shown very competitive 
performance when programmed using OpenCL, including convolutional neural nets, FFTs, and 
astronomy de-dispersion algorithms.

Unlock Intel GPUs for High Performance Compute, Media 
and Computer Vision Capabilities with Intel OpenCL 
Extensions - Jeff Mcallister, Biju George, Adam Herr and Ben 
Ashbaugh (Intel)

The keys to unlock the full performance potential of Intel GPUs for emerging workloads in general 
compute, media, computer vision, and machine learning are in the rich suite of Intel OpenCL 
extensions. These give developers direct access to unique Intel hardware capabilities, which until 
now have been difficult to master.
This tutorial builds step by step with multiple examples, including:

• How to write high performance general compute applications based on the core concept of 
OpenCL subgroups.

• How to use additional subgroup operations described in the Intel subgroups and media block 
read/write extensions.

• Then using the framework of subgroups, we explain the device-side motion estimation 
extension which leverages the unique Intel GPU media sampler to accelerate motion 
estimation operations from OpenCL kernels.

• Finally we explain the Video Enhancement (VEBOX) extension, which is an OpenCL host 
level API extension to leverage a powerful media fixed function unit to accelerate many 
frame level video enchancement operations.

Faster, smarter computer vision with AI and OpenCL - Uri 
Levy and Jeffrey Mcallister (Intel)

Learn how to use Intel machine learning and computer vision tools to get from concept to market 
faster for machine learning applications based on OpenCL and OpenVX. Build two example 
scenarios: autonomous driving with FPGA inference and a smart camera app using Intel Graphics 
inference. This presentation will show how a unified set of tools can reduce the complexity of 
developing heterogeneous machine learning apps – from training a model with input images, to 
creating a custom classifier, to building an optimized traditional computer vision pipeline around 
the classifier to create a full computer vision application



GPGPU Acceleration using OpenCL for a Spotlight SAR 
Simulator - Eric Balster, Jon Skeans and David Fan 
(University of Dayton) Marc Hoffman (US Air Force Research 
Laboratory)

In this paper, OpenCL is used to target a general purpose graphics processing unit (GPGPU) for 
acceleration of 2 modules used in a synthetic aperture radar (SAR) simulator. Two of the most 
computationally complex modules, the Generate Return and Back Projection modules, are targeted 
to an AMD FirePro M5100 GPGPU. The resulting speedup is 2.5X over multi-threaded C++ 
implementations of those algorithms running on an 8-core Intel I7 2.8GHz processor, 5X over 
singlethreaded C++ implementations, and 24X over native MATLAB implementations, on average.

Near Real-Time Risk Simulation of Complex Portfolios on 
Heterogeneous Computing Systems with OpenCL - Javier 
Alejandro Varela and Norbert Wehn (University of 
Kaiserslautern)

In this work, we exploit OpenCL to efficiently map the nested simulation of complex portfolios 
with multiple algorithms on heterogeneous computing systems. Code portability and customizations 
allow us to profile the kernels on different accelerating platforms, such as CPU, Intel's Xeon Phi 
and GPU. The combination of OpenCL, a new bit-accurate algorithmic optimization and the 
extension of an existing numerical interpolation scheme allows us to achieve 1000x speedup 
compared to the state-of-the-art approach. Our system design minimizes costly host-device transfers 
and global memory, enabling complex portfolios to be easily scaled.

A Performance and Energy Evaluation of OpenCL-
accelerated Molecular Docking - Leonardo Solis Vasquez and 
Andreas Koch (Technische Universität Darmstadt)

This work presents an OpenCL implementation of AutoDock, and a corresponding performance 
evaluation on two different platforms based on multi-core CPU and GPU accelerators. It shows that 
OpenCL allows highly efficient docking simulations, achieving speedups of 4x and 56x over ∼ ∼
the original serial AutoDock version, as well as energy efficiency gains of 2x and 6x. ∼ ∼
respectively. To the best of our knowledge, this work is the first one also considering the energy 
efficiency of molecular docking programs.



Assessing the feasibility of OpenCL CPU implementations for 
agent-based simulations - Nuno Fachada and Agostinho Rosa 
(Instituto Superior Técnico, Portugal)

In this paper we evaluate the feasibility of using CPU-oriented OpenCL for high-performance 
simulations of agent-based models. We compare a CPU-oriented OpenCL implementation of a 
reference ABM against a parallel Java version of the same model. We show that there are 
considerable gains in using CPU-based OpenCL for developing and implementing ABMs, with 
speedups up to 10x over the parallel Java version on a 10-core hyper-threaded CPU.

Enabling FPGAs as a True Device in the OpenCL Standard - 
Vincent Mirian and Paul Chow (University Of Toronto)

As FPGA capacities continue to increase, the ability to partition and partially reconfigure the FPGA 
will become even more desirable. The fundamental issue is how FPGAs are currently viewed as 
devices in the OpenCL model. In this paper, we propose a small change to the OpenCL definition of 
a device that unlocks the full potential of FPGAs to the programmer.

Applying Models of Computation to OpenCL Pipes for FPGA 
Computing - Nachiket Kapre and Hiren Patel (University of 
Waterloo)

We propose imposing a communication discipline inspired from models of computation 
(e.g.Ptolemy) such as SDF (synchronous dataflow), bulk synchronous (BSP), or Discrete Event 
(DE). These models offer a restricted subset of communication patterns that enable implementation 
tradeoffs and deliver performance and resource guarantees. This is useful for OpenCL developers 
operating within the constraints of the FPGA device. We hope to facilitate a preliminary analysis 
and evaluation of supporting these patterns in OpenCL and quantifying associated FPGA 
implementation costs.

Accelerating Applications at Cloud Scale using FPGAs - Sarah 
Siripoke, Fernando Martinez Vallina and Spenser Gilliland 
(Xilinx)

The acceptance and success of cloud computing has given application developers access to 
computing and new customers at a scale never seen below. The inherent ability of an FPGA to 
reconfigure and be workload optimized is a great advantage given the fast-moving needs of cloud 
computing applications. In this talk we will discuss how users can develop, accelerate and deploy 



accelerated applications in the cloud at scale. You will learn how to get started on a turn-key 
OpenCL development environment in the cloud using Xilinx FPGAs.

Creating High Performance Applications with Intel's FPGA 
OpenCL SDK - Andrew Ling, Utku Aydonat, Davor Capalija, 
Shane O'Connell and Gordon Chiu (Intel)

After decades of research, High-Level Synthesis has finally caught on as a mainstream design 
technique for FPGAs. However, achieving performance results that are comparable to designing at a 
hardware description level still remains a challenge. In this talk, we illustrate how we achieve world 
class performance results on HPC applications by using OpenCL. Specifically, we show how we 
achieve 1Tflop of performance on a matrix multiply and over 1.3Tflops on a CNN application, run 
on Intel's 20nm Arria 10 FPGA device. Finally, we will describe spatial coding techniques that lead 
to efficient structures, such as systolic-arrays, to ensure that the FPGA runs efficiently.

Symphony - Task Scheduling and Memory Management in 
Heterogeneous Computing - Amit Jindal and Wenjia Ruan 
(Qualcomm Technologies)

Task scheduling and memory management are challenges that make Heterogeneous Computing 
difficult for the masses. There are several programming models and tools that exist targeting 
partitioning of workload and accessibility of data between CPU and GPU. We have developed and 
deployed Symphony SDK – a framework that makes workload partitioning, scheduling and 
memory management ‘simple' for developers. In this talk, we will introduce Symphony 
architecture, elaborate how existing OpenCL kernels can be reused with heterogeneous task 
synchronization, task scheduling, and memory management capabilities of Symphony. We will also 
share real-world cases where Symphony has provided 2x-6x performance speed-ups.

CUDA-on-CL: A compiler and runtime for running modern 
CUDA c++11 applications on OpenCL 1.2 devices - Hugh 
Perkins (ASAPP)

Cuda-on-cl addresses the problem of creating and maintaining OpenCL forks by leaving the 
reference implementation entirely in NVIDIA CUDA, and writing both a compiler and a runtime 
component, so that any CUDA c++11 application can in theory be compiled and run directly on any 
OpenCL 1.2 device. We use Tensorflow framework as a case-study, and demonstrate the ability to 
run Tensorflow and Eigen kernels directly, with no modification to the original CUDA source-code. 
Performance studies are also undertaken, and show that the cuda-on-cl program runs at about 25% 
of the original CUDA-compiled version.



OpenCL in Scientific High Performance Computing—The 
Good, the Bad, and the Ugly - Matthias Noack (Zuse Institute 
Berlin)

We present experiences with utilising OpenCL alongside C ++ , MPI, and CMake in two real-world 
scientific codes. Our targets are a Cray XC40 supercomputer with multi- and many-core (Xeon Phi) 
CPUs, as well as multiple smaller systems with Nvidia and AMD GPUs. We shed light on practical 
issues arising in such a scenario, like the interaction between OpenCL and MPI, discuss solutions, 
and point out current limitations of OpenCL in the domain of scientific HPC from an application 
developer's and user's point of view.

Accelerated Machine Learning Using TensorFlow and SYCL 
on OpenCL Devices - Andrew Richards, Mehdi Goli and Luke 
Iwanski (Codeplay)

Codeplay has been working with Google to add SYCL back-end support in TensorFlow, one of the 
most popular machine learning frameworks, enabling developers to use OpenCL devices with their 
machine learning applications. SYCL provides an abstraction layer that simplifies parallel 
development, giving developers access to the computing power of OpenCL devices and reducing 
the amount of code required. Andrew Richards will talk about how machine learning applications 
can harness the power of OpenCL using open standards and how, by using SYCL, TensorFlow can 
be extended to include customized operations running on OpenCL devices.

Analyzing and improving performance portability of OpenCL 
applications via auto-tuning - James Price and Simon 
McIntosh-Smith (University of Bristol)

In this talk, we present an approach for analyzing performance portability that exploits that black-
box nature of automatic performance tuning techniques. We demonstrate this approach across a 
diverse range of GPU and CPU architectures for two simple OpenCL applications. We then discuss 
the potential for auto-tuning to aid the generation of performance portable OpenCL kernels by 
incorporating multi-objective optimization techniques into the tuning process.

Wavefront Parallel Processing on GPUs with an Application to 
Video Encoding Algorithms - Biju George and Ben Ashbaugh 
(Intel)

In this presentation we focus on the application of the wavefront pattern to design efficient GPGPU 
implementations of video encoding algorithms using OpenCL kernels. We present our experiences 



in implementing and evaluating four solutions of WPP for inter and intra estimation for AVC on 
GPUs. We explain the reasoning behind each solution and present the results of our analysis.

Challenges and Opportunities in Native GPU Debugging with 
OpenCL - Uri Levy (Intel)

In this technical session we'll present the open architectural design of the debugger and how it fits 
into the OpenCL JIT compilation flow and the underlying compute technology of the HW with 
focus on Intel processor graphics. We'll demonstrate a show case on how to natively work with the 
debugger to solve functional bugs, as-well-as low-level debugging techniques on SIMD thread level 
which help to solve complex issues such as misaligned or out of range accesses to localglobal 
memory, stack overflows, Illegal instructions, etc. Finally, we'll cover the challenges in debugging

Modeling Explicit SIMD Programming with Subgroup 
Functions - Biju George and Ben Ashbaugh (Intel)

In this presentation, based on our experience in developing publicly released vendor extensions 
based on subgroups, we explain the advantages of the “explicit SIMD” programming paradigm 
using OpenCL subgroup and how the subgroups framework can be leveraged to: (1) Model features 
for performance in OpenCL that are commonly available in programming languages or interfaces 
based on an “explicit SIMD” programming paradigm such as the AVX intrinsics supported in GCC; 
and to (2) Model features to expose functionality available in GPU accelerator units that are more 
conveniently and efficiently exposed using a block API. 

IWOCL Program overview provided by StreamComputing, your software development partner.


	IWOCL - all the talks
	Heterogeneous Computing Using Modern C++ with OpenCL Devices - Rod Burns and Ruyman Reyes (Codeplay)
	Harnessing the Power of FPGAs with the Intel FPGA SDK for OpenCL- Byron Sinclair, Andrew Ling and Genady Paikin (Intel)
	Unlock Intel GPUs for High Performance Compute, Media and Computer Vision Capabilities with Intel OpenCL Extensions - Jeff Mcallister, Biju George, Adam Herr and Ben Ashbaugh (Intel)
	Faster, smarter computer vision with AI and OpenCL - Uri Levy and Jeffrey Mcallister (Intel)
	GPGPU Acceleration using OpenCL for a Spotlight SAR Simulator - Eric Balster, Jon Skeans and David Fan (University of Dayton) Marc Hoffman (US Air Force Research Laboratory)
	Near Real-Time Risk Simulation of Complex Portfolios on Heterogeneous Computing Systems with OpenCL - Javier Alejandro Varela and Norbert Wehn (University of Kaiserslautern)
	A Performance and Energy Evaluation of OpenCL-accelerated Molecular Docking - Leonardo Solis Vasquez and Andreas Koch (Technische Universität Darmstadt)
	Assessing the feasibility of OpenCL CPU implementations for agent-based simulations - Nuno Fachada and Agostinho Rosa (Instituto Superior Técnico, Portugal)
	Enabling FPGAs as a True Device in the OpenCL Standard - Vincent Mirian and Paul Chow (University Of Toronto)
	Applying Models of Computation to OpenCL Pipes for FPGA Computing - Nachiket Kapre and Hiren Patel (University of Waterloo)
	Accelerating Applications at Cloud Scale using FPGAs - Sarah Siripoke, Fernando Martinez Vallina and Spenser Gilliland (Xilinx)
	Creating High Performance Applications with Intel's FPGA OpenCL SDK - Andrew Ling, Utku Aydonat, Davor Capalija, Shane O'Connell and Gordon Chiu (Intel)
	Symphony - Task Scheduling and Memory Management in Heterogeneous Computing - Amit Jindal and Wenjia Ruan (Qualcomm Technologies)
	CUDA-on-CL: A compiler and runtime for running modern CUDA c++11 applications on OpenCL 1.2 devices - Hugh Perkins (ASAPP)
	OpenCL in Scientific High Performance Computing—The Good, the Bad, and the Ugly - Matthias Noack (Zuse Institute Berlin)
	Accelerated Machine Learning Using TensorFlow and SYCL on OpenCL Devices - Andrew Richards, Mehdi Goli and Luke Iwanski (Codeplay)
	Analyzing and improving performance portability of OpenCL applications via auto-tuning - James Price and Simon McIntosh-Smith (University of Bristol)
	Wavefront Parallel Processing on GPUs with an Application to Video Encoding Algorithms - Biju George and Ben Ashbaugh (Intel)
	Challenges and Opportunities in Native GPU Debugging with OpenCL - Uri Levy (Intel)
	Modeling Explicit SIMD Programming with Subgroup Functions - Biju George and Ben Ashbaugh (Intel)

