The first two parts described hardware-companies and operating systems, programming languages and software-companies, written about half a year ago. Now we focus on what has driven NVIDIA and ATI/AMD for decades: games.
Disclaimer: this is an opinion-piece on the current market. We are strong supporters of OpenCL and all companies which support it too. Since our advise on specific hardware in a consult will be based on specific demands on the customer, we could advise differently than would be expected on the below article.
Games
Computer games are cool; merely because you choose from so many different kinds. While Tetris will live forever, the latest games also have something to add: realistic physics simulation. And that’s what’s done by GPUs now. Nintendo has shown us that gameplay and good interaction are far more important than video-quality. The wow-factor for photo-realistic real-time rendering is not as it was years ago.
You might know the basics for falling objects: F = m*g (Force = Mass times Gravity-acceleration), and action = – reaction. If you drop some boxes, you can predict falling speed, interaction, rotation and possible change of centre of gravity from a still image as a human being. A computer has to do a lot more to detect collision, but the idea is very doable on a fast CPU. A very well-known open source library for these purposes is Bullet Physics. The nice thing comes, when there is more than just a few boxes, but thousands of them. Or when you walk through water or under a waterfall, see fire and smoke, break wood but bend metal, etc. The accelerometer of the iPod was a game-changer too in the demand for more realism in graphics. For an example of a “physics puzzle game” not using GPGPU see World of Goo (with free demo) – for the rest we talk more about high-end games. Of current game-ready systems PCs (Apple, Linux and Windows) have OpenCL support, Sony PlayStation 3 is now somewhat vague and the Xbox 360 has none.
The picture is from Crysis 3, which does not use OpenCL, as we know it.