The rise of the GPGPU-compilers

Painting "High Rise" made by Huma Mulji
Painting “High Rise” made by Huma Mulji

If you read The Disasters of Visual Designer Tools you’ll find a common thought about easy programming: many programmers don’t learn the hard-to-grasp backgrounds any more, but twiddle around and click a program together. In the early days of BASIC, you could add Assembly-code to speed up calculations; you only needed tot understand registers, cache and other details of the CPU. The people who did that and learnt about hardware, can actually be considered better programmers than the C++ programmer who completely relies on the compiler’s intelligence. So never be happy if the control is taken out of your hands, because it only speeds up the easy parts. An important side-note is that recompiling easy readable code with a future compiler might give faster code than your optimised well-engineered code; it’s a careful trade-off.

Okay, let’s be honest: OpenCL is not easy fun. It is more a kind of readable Assembly than click-and-play programming. But, oh boy, you learn a lot from it! You learn architectures, capabilities of GPUs, special purpose processors and much more. As blogged before, OpenCL probably is going to be the hidden power for non-CPUs wrapped in something like OpenMP.

Continue reading “The rise of the GPGPU-compilers”

Using Qt Creator for OpenCL

More and more ways are getting available to bring easy OpenCL to you. Most of the convenience libraries are wrappers for other languages, so it seems that C and C++ programmers have the hardest time. Since a while my favourite way to go is Qt: it is multi-platform, has a good IDE, is very extensive, has good multi-core and OpenGL-support and… has an extension for OpenCL: http://labs.trolltech.com/blogs/2010/04/07/using-opencl-with-qt http://blog.qt.digia.com/blog/2010/04/07/using-opencl-with-qt/

Other multi-platform choices are Anjuta, CodeLite, Netbeans and Eclipse. I will discuss them later, but wanted to give Qt an advantage because it also simplifies your OpenCL-development. While it is great for learning OpenCL-concepts, please know that the the commercial version of Qt Creator costs at least €2995,- a year. I must also warn the plugin is still in beta.

streamhpc.com is not affiliated with Qt.

Getting it all

Qt Creator is available in most Linux-repositories: install packages ‘qtcreator’ and ‘qt4-qmake’. For Windows, MAC and the other Linux-distributions there are installers available: http://qt.nokia.com/downloads. People who are not familiar with Qt, really should take a look around on http://qt.nokia.com/.

You can get the source for the plugin QtOpenCL, by using GIT:

git clone http://git.gitorious.org/qt-labs/opencl.git QtOpenCL

See http://qt.gitorious.org/qt-labs/opencl for more information about the status of the project.

You can download it here: https://dl.dropbox.com/u/1118267/QtOpenCL_20110117.zip (version 17 January 2011)

Building the plugin

For Linux and MAC you need to have the ‘build-essentials’. For Windows it might be a lot harder, since you need make, gcc and a lot of other build-tools which are not easily packaged for the Windows-OS. If you’ve made a win32-binary and/or a Windows-specific how-to, let me know.

You might have seen that people have problems building the plugin. The trick is to use the options -qmake and -I (capital i) with the configure-script:

./configure -qmake <location of qmake 4.6 or higher> -I<location of directory CL with OpenCL-headers>

make

Notice the spaces. The program qmake is provided by Qt (package ‘qt4-qmake’), the OpenCL-headers by the SDK of ATI or NVidia (you’ll need the SDK anyway), or by Khronos. By example, on my laptop (NVIDIA, Ubuntu 32bit, with Qt 4.7):

./configure -qmake /usr/bin/qmake-qt4 -I/opt/NVIDIA_GPU_Computing_SDK_3.2/OpenCL/common/inc/

make

This should work. On MAC the directory is not CL, but OpenCL – I haven’t tested it if Qt took that into account.

After building , test it by setting a environment-setting “LD_LIBRARY_PATH” to the lib-directory in the plugin, and run the provided example-app ‘clinfo’. By example, on Linux:

export LD_LIBRARY_PATH=`pwd`/lib:$LD_LIBRARY_PATH

cd util/clinfo/

./clinfo

This should give you information about your OpenCL-setup. If you need further help, please go to the Qt forums.

Configuring Qt Creator

Now it’s time to make a new project with support for OpenCL. This has to be done in two steps.

First make a project and edit the .pro-file by adding the following:

LIBS += -L<location of opencl-plugin>/lib -L<location of OpenCL-SDK libraries> -lOpenCL -lQtOpenCL

INCLUDEPATH += <location of opencl-plugin>/lib/

<location of OpenCL-SDK include-files>

<location of opencl-plugin>/src/opencl/

By example:

LIBS += -L/opt/qt-opencl/lib -L/usr/local/cuda/lib -lOpenCL -lQtOpenCL

INCLUDEPATH += /opt/qt-opencl/lib/

/usr/local/cuda/include/

/opt/qt-opencl/src/opencl/

The following screenshot shows how it could look like:

Second we edit (or add) the LD_LIBRARY_PATH in the project-settings (click on ‘Projects’ as seen in screenshot):

/usr/lib/qtcreator:location of opencl-plugin>:<location of OpenCL-SDK libraries>:

By example:

/usr/lib/qtcreator:/opt/qt-opencl/lib:/usr/local/cuda/lib:

As you see, we now also need to have the Qt-creator-libraries and SDK-libraries included.

The following screenshot shows the edit-field for the project-environment:

Testing your setup

Just add something from the clinfo-source to your project:

printf("OpenCL Platforms:n"); 
QList platforms = QCLPlatform::platforms();
foreach (QCLPlatform platform, platforms) { 
   printf("    Platform ID       : %ldn", long(platform.platformId())); 
   printf("    Profile           : %sn", platform.profile().toLatin1().constData()); 
   printf("    Version           : %sn", platform.version().toLatin1().constData()); 
   printf("    Name              : %sn", platform.name().toLatin1().constData()); 
   printf("    Vendor            : %sn", platform.vendor().toLatin1().constData()); 
   printf("    Extension Suffix  : %sn", platform.extensionSuffix().toLatin1().constData());  
   printf("    Extensions        :n");
} QStringList extns = platform.extensions(); 
foreach (QString ext, extns) printf("        %sn", ext.toLatin1().constData()); printf("n");

If it gives errors during programming (underlined includes, etc), focus on INCLUDEPATH in the project-file. If it complaints when building the application, focus on LIBS. If it complaints when running the successfully built application, focus on LD_LIBRARY_PATH.

Ok, it is maybe not that easy to get it running, but I promise it gets easier after this. Check out our Hello World, the provided examples and http://doc.qt.nokia.com/opencl-snapshot/ to start building.

Our training concepts for GPGPU

It’s almost time for more nerdy stuff we have in the pipe-line, but we’ll keep for some superficial blah for a moment. We concentrate on training (and consultancy). There is a lot of discussion here about “how to design training-programs about difficult concepts for technical people”, or better: “how to learn yourself something difficult”. At the end of this blog, we’ll show you a list how to learn OpenCL yourself, but before that we want to share how we look at training you.

Disclaimer: this blog item is positive about our own training-program for obvious reasons. We are aware people don’t want (too much) spam, so we’ll keep this kind of blogs to the minimum. If you want to tell the world that your training-program is better, first mail us for our international partner-program. If you want the training, come back on 14 June or mail us.

OpenCL and CUDA are not the easiest programming languages due to incomparable concepts in software-land (You can claim Java is “slightly” different). Can the usual ways of training give you the insights and facts you need to know?

Current programs

Most training-programs are vendor-supported. People who follow us on Twitter, know we are not the best supporters of vendor locked products. So lets get a list of a typical vendor-supported training-programs, I would like to talk about:

  • They have to be difficult, so the student accomplishes something.
  • The exam are expensive to demotivate trial-on-error-students.
  • You get an official certificate, which guarantees a income-raise.
  • Books and trainings focus on facts you must learn.
  • It’s very clear what you must learn and what you can skip.

So in short, you chose you wanted to know the material and put a lot of effort in it. You get back more than just the knowledge.

Say you get the opposite:

  • They are easy to accomplish.
  • Exams is an assignment which you only need to finish. You can try endless times.
  • You don’t get a certificate, but you might get feedback and homework for self-study.
  • You get a list of facts you must learn; the concepts are explained to support this.
  • You are free to pick which subject you like.

That sucks! You cannot brag about your accomplishments and after the training you still cannot do anything with it; it will probably take years to actually finish it. So actually it’s very clear why the programs are like this, or can we learn from this opposing list? Just like with everything else, you never have to just copy what’s available but pick out the good parts.

Learning GPGPU

If you want to learn GPGPU, you have to learn (in short) shader-concepts, OpenCL, CUDA and GPU-architectures. What would be needed to learn it, according to us?

  • A specified list of subjects you can check when understood.
  • An insight story of the underlying concepts to better understand the way stream-computing works. Concepts are the base of everything, to actually make it sound simple.
  • Very practical know-how. Such as how to integrate stream-computing-code into your current software.
  • A difficult assignment that gets you in touch with everything you learned. The training gave you the instruments you need to accomplish this step.

So there’s no exam and no certificate; these are secondary reasons for finishing the course. The focus should be getting the brain wrapped around the concepts and getting experience. As the disclaimer warned you, our training-program has a high focus on getting you up-and-running in one day. And you do get a certificate after your assignment gets approved, so bragging is easy.

If you want to learn stream-computing and you won’t use our training-program, what then?

  • Read our blog (RSS) and follow us on Twitter.
  • Make yourself a list of subjects you think you have to learn. Thinking before doing helps in getting a focus.
  • Buy a book. There are many.
  • Play around with existing examples. Try to break it. Example: what happens if the kernel uses more and more local/private memory.
  • Update the list of subjects; the more extensive, the better. Prioritise.
  • Find yourself an assignment. For example: try to compress or decompress a large JPG using OpenCL. If you succeed, get yourself a harder assignment. Do you want to be good or the best?

If you know OpenCL, CUDA is easy to learn! We will have some blogs which support your quest on learning OpenCL, so just start to dig in today and see you next time.