
Q: Say a GPU has 1000 cores, how many threads can efficiently run on a GPU?
A: at a minimum around 4 billion can be scheduled, 10’s of thousands can run simultaneously.
If you are used to work with CPUs, you might have expected 1000. Or 2000 with hyper-threading. Handling so many more threads than the number of available cores might sound inefficient. There are a few reasons why a GPU has been designed to handle so many threads. Read further…
NOTE: The below description is a (very) simplified model with the purpose to explain the basics. It is far from complete, as it would take a full book-chapter to explain it all. Continue reading “How many threads can run on a GPU?”
We have several wishes for 2017 and two of them are to make code for the open source community. Luckily HiPEAC is interested in more collaboration between academia and industry and therefore
The fifth International Workshop on OpenCL (IWOCL) will be held on 16-18 May 2017 in Toronto, Canada. The event kicks-off with a full-day Advanced Hands-On OpenCL tutorial which is followed by two-days of conference: keynotes, academic papers, technical presentations, tutorials, poster sessions and table-top demonstrations.
Some weeks ago we started with implementing the Compiler Test Suite for OpenCL 2.2. The biggest improvement of OpenCL 2.2 is C++ kernels, which originally was planned for 2.1. SPIRV 1.1 is another big improvement.

To temporarily increase capacity we put Quartus 16.0.2 on an Ubuntu server, which did not go smooth – but at least smoother than upgrading packages to required versions on RedHat/CentOS. While the download says “Linux” and you’re expecting support for multiple Linux breeds, there is only official support for Redhat 6.5 (and CentOS).
One of the world’s most used software is far from performance optimised and there is hardly anything we can do about it. I’m talking about Excel.

In the past years we have been translating several types of software to AMD, targeting OpenCL (and HSA). The main problem was that manual porting limits the size of the to-be-ported code-base.
The information you find everywhere: on Linux the current “radeon” and “fglrx” are being replaced by AMDGPU (graphics) and ROCm (compute) for HSA-enabled GPUs. As the whole AMD Linux driver team is seemingly working on getting the new and open source drivers ready, fglrx is now deprecated and will not get updates (or very late). I therefore can get to the point:


From 24 to 28 October we give a 4-day training on OpenCL-on-FPGAs using Altera hardware. The learning goals are correctly writing OpenCL code for FPGAs, learning to work with Quartus and understanding the important optimisation techniques.

In the past year we’ve been working on more internal projects and therefore we’re seeking strong GPU-coders (good OpenCL experience required) worldwide. This way you can combine staying close to your family and working with advanced technologies. You will be on the newly formed international team.



For years we haven been complaining on this blog what AMD was lacking and what needed to be improved. And as you might have concluded from the title of this blogpost, there has been a lot of progress.